A TGS survival book reprint. You don't need to be a master chemist to understand the chemicals that make plants grow and the processes that you use on farms and gardens for successful crops. In time of economic failures, books like these will be a necessary addition to any survival home library.
From the Preface
The object of the present work is to offer to the farmer a concise outline of the general principles of Agricultural Chemistry.
It has no pretensions to be considered a complete treatise on the subject. On the contrary, its aim is strictly elementary, and with this view I have endeavoured, as far as possible, to avoid unnecessary technicalities so as to make it intelligible to those who are unacquainted with the details of chemical science, although I have not hesitated to discuss such points as appeared essential to the proper understanding of any particular subject.
The rapid progress of agricultural chemistry, and the numerous researches prosecuted under the auspices of agricultural societies and private experimenters in this and other countries, render it by no means an easy task to make a proper selection from the mass of facts which is being daily accumulated.
In doing this, however, I have been guided by a pretty intimate knowledge of the wants of the farmer, which has induced me to enlarge on those departments of the subject which bear more immediately on the every-day practice of agriculture; and for this reason the composition and properties of soils, the nature of manures, and the principles by which their application ought to be governed, have been somewhat minutely treated.
In all cases numerical details have been given as fully as is consistent with the limits of the work; and it may be right to state that a considerable number of the analyses contained in it have been made in my own laboratory, and that even when I have preferred to quote the results of other chemists, they have not unfrequently been confirmed by my own experiments.
Excerpt
The organic matter exists in the form of a substance called humus, which must be considered here as a source of the organic constituents of plants, independently of the general composition of the soil, which will be afterwards discussed.
The term humus is generic, and applied by chemists to a rather numerous group of substances, very closely allied in their properties, several of which are generally present in all fertile soils. They have been submitted to examination by various chemists, but by none more accurately than by Mulder and Herman, to whom, indeed, we owe almost all the precise information we possess on the subject.
The organic matters of the soil may be divided into three great classes; the first containing those substances which are soluble in water; the second, those extracted by means of caustic potash; and the third, those insoluble in all menstrua. When a soil is boiled with a solution of caustic potash, a deep brown fluid is obtained, from which acids precipitate a dark brown flocculent substance, consisting of a mixture of at least three different acids, to which the names of humic, ulmic, and geic acids have been applied. The fluid from which they have been precipitated contains two substances, crenic and apocrenic acids, while the soil still retains what has been called insoluble humus.
The acids above named do not differ greatly in chemical characters, but they have been subdivided into the humic, geic, and crenic groups, which present some differences in properties and composition. They are compounds of carbon, hydrogen, and oxygen, and are characterised by so powerful an affinity for ammonia that they are with difficulty obtained free from that substance, and generally exist in the soil in combination with it.
They are all products of the decomposition of vegetable matters in the soil, and are formed during their decay by a succession of changes, which may be easily traced by observing the course of events when a piece of wood or any other vegetable substance is exposed for a length of time to air and moisture. It is then found gradually to disintegrate with the evolution of carbonic acid, acquiring first a brown and finally a black colour.
At one particular stage of the process it is converted into one or other of two substances, called humin and ulmin, both insoluble in alkalies, and apparently identical with the insoluble humus of the soil; but when the decomposition is more advanced the products become soluble in alkalies, and then contain humic, ulmic, and geic acids, and finally, by a still further progress, crenic and apocrenic acids are formed as the result of an oxidation occurring at certain periods of the decay.
The roots and other vegetable debris remaining in the soil undergo a similar series of changes, and form the humus, which is found only in the surface soil, that is to say, in the portion which is now or has at some previous period been occupied by plants, and the quantity of humus contained in any soil is mainly dependent on the activity of vegetation on it.
Numerous analyses of humus compounds extracted from the soil have been made, and have served to establish a number of minor differences in the composition even of those to which the same name has been applied, due manifestly to the fact that their production is the result of a gradual decomposition, which renders it impossible to extract from the soil one pure substance, but only a variable mixture of several, so similar to one another in properties, that their separation is very difficult, if not impossible.
For this reason great discrepancies exist in the statements made regarding them by different observers, but this is a matter of comparatively small importance, as their exact composition has no very direct bearing on agricultural questions, and it will suffice to give the names and chemical formulæ of those which have been analysed and described...
Softcover, 8½" x 7", 315+ pages
Perfect-Bound- Illustrated